

Neutron Star Merger Dynamics

www.computational-relativity.org

arXiv:2002.03863

David Radice — July 28, 2020

From LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT ApJL 848:L12 (2017)

How do neutron star mergers power gamma-ray bursts? From LIGO Scientific Collaboration and Virgo Collaboration, Fermi

BEDITIES, Zadko, Trelescope, Net, ART, Pi of the sky, AST3-2, ATLAS, Daniel Tel, DPN, TBOS, EABA IR REM-ROS2, VISTA, Gemin WY AND ACTION OF ACTION OF ACTION, ASTRO-SAT Cadmium Zinc REM-ROS2, VISTA, Gemin WY AND ACTION OF AC

• Was the gold in my wedding ring formed in a neutron star SKA Pathinder, Las M2H Sw merger? Was it swirling around in an accretion disk? Or was it ration, The tidally ejected prior to the cataclysmic collision? attent NRAO, TTU-NRAO, and NUSTAR

Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT ApJL 848:L12 (2017)

Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The

WhiskyTHC

http://personal.psu.edu/~dur566/whiskythc.html

- Full-GR, dynamical spacetime*
- Nuclear EOS
- Effective neutrino treatment
- High-order hydrodynamics
- Open source!

* using the Einstein Toolkit metric solvers

THC: Templated Hydrodynamics Code

Skip Ad ►

Neutron rich outflows

Compact object + disk

Neutron star merger evolution

The inspiral phase

Gravitational waves

GW170817 — In the frequency domain vs theory prediction

https://teobresums.github.io/gwevents/

Gravitational waves

GW170817 — In the frequency domain vs theory prediction

https://teobresums.github.io/gwevents/

The CoRe database

www.computational-relativity.org

Dietrich, **DR**, Bernuzzi+ CQG 35:LT01 (2018)

The CoRe database

www.computational-relativity.org

Dietrich, **DR**, Bernuzzi+ CQG 35:LT01 (2018)

Early postmerger evolution

Prompt BH formation: $q \simeq 1$

From Hotokezaka+ 2011

From Bauswein+ 2013

See also Bauswein+ 2017, Köppel+ 2019, Agathos+ 2019, Bernuzzi+ 2020

Dynamical mass ejection

See also Bausswein+ 2013, Hotokezaka+ 2013, Wanajo+ 2014, Sekiguchi+ 2015, 2016, Foucart+ 2016, Lehner+ 2016, Dietrich+ 2016, **DR**+ 2018, ...

DR, Galeazzi+ MRAS 460:3255 (2016)

The kilonova in GW170817

From Villar et al. ApJL 851:L21 (2017)

Disk formation I

q = 1.8

q = 1.0

 $\mathcal{M}_{\rm chirp} = 1.188 \ M_{\odot}$

Bernuzzi, ..., **DR**+, arXiv:2003.06015

Disk formation II

Bernuzzi, ..., **DR**+, arXiv:2003.06015

Disk masses

See also Krüger+ 2020; Salafia+ 2020; ...

DR, Perego+ ApJL 852:L29 (2018); **DR** & Dai, Eur. Phys. J. A 55: 50 (2019)

Equation of state constraints

DR, Perego+ ApJL 852:L29 (2018); **DR** & Dai, Eur. Phys. J. A 55: 50 (2019)

Equation of state constraints

Equation of state constraints

PDF

DR & Dai, Eur. Phys. J. A 55: 50 (2019)

Long-term evolution

End of the GW-driven phase

DR, Perego, Bernuzzi, Zhang, MNRAS 481:3670 (2018)

Secular evolution: BH remnants

Secular evolution: NS remnants

DR, Perego, Bernuzzi, Zhang, MNRAS 481:3670 (2018)

Spiral-wave wind (I)

From Nedora, Bernuzzi, **DR**+, ApJL 886:L30 (2019)

Spiral-wave wind (II)

Promising, but incomplete, and not the only possible explanation

From Nedora, Bernuzzi, **DR**+, ApJL 886:L30 (2019)

Spiral-wave wind (II)

Promising, but incomplete, and not the only possible explanation

From Nedora, Bernuzzi, **DR**+, ApJL 886:L30 (2019)

Future Challenges

Neutrino physics

2015, Metzger+ 2014, Foucart+ 2016, Siegel & Metzger 2018, ...

From Miller+ 2019

 $Y_{e|_{5GK}}$

MHD turbulence 1e14 1.0 Siegel & Metzger 2018 0.8 60 0.6 40 0.4 20 0.2 0.2 0.0 -0.2 ^[5] 0 -20 -0.4-40-0.6-60 -0.8 250 300 50 100 150 200 350 0 -1.0 $t \, [\mathrm{ms}]$ Kiuchi+ 2014 See also t=38.8ms Price & Rosswog 2006;

Andreson+ 2008; Etienne+ 2011; Endrizzi+ 2014; Giacomazzo+ 2015; Ruiz+ 2016; Palenzuela+ 2016; Fernandez+ 2018; Ciolfi+ 2019; ...

 $z \, [\mathrm{km}]$

Mösta, **DR**+ 2020

Merger outcome

Conclusions

- Inspiral and early postmerger are better understood, but there is still a vast parameter space volume to explore.
- We can already do multimessenger astrophysics!
- The physics becomes increasingly complex on longer timescales in the postmerger. Higher resolution, longer, and more sophisticated simulations are needed.