EVALUATING NEUTRINO MOMENT CLOSURES IN NEUTRON STAR MERGERS

Sherwood Richers, N3AS Postdoctoral Fellow

<u>Collaborators</u>: David Radice, Hiroki Nagakura, Sanjana Curtis, Dan Kasen

NEUTRINOS DETERMINE DYNAMICS & NUCLEOSYNTHESIS IN MERGERS

31MS AFTER MERGER

How/where are the neutrinos transporting leptons and energy?

MONTE CARLO GRMHD SIMULATION

Accurate simulations can be matched to observables. But are <u>expensive</u>.

PARAMETER STUDIES REQUIRE MANY SIMULATIONS

But approximations induce errors.

EXACT METHODS CAN IMPROVE APPROXIMATE METHODS

Moment-based results <u>qualitatively</u> match Monte Carlo results.

HOW IS TRANSPORT SIMULATED?

A DEEPER LOOK AT THE NEUTRINOS

Standard Model of Elementary Particles

But the neutrino flavors are mixed! (Pontecorvo 1968, Wolfenstein1978, Mikheev & Smirnov 1985)

Cardall 2008 Vlasenko et al. 2014 Blaschke+Cirigliano 2016

<u>Transform</u>

NEUTRINO TRANSPORT

(How MANY NEUTRINOS ARE WHERE AND MOVING IN WHAT DIRECTION?)

$$\frac{d \mathbf{f}}{d\lambda} = \mathcal{C}[\mathbf{f}]$$

Monte Carlo

$$E_{\mathrm{rad},q} = \bar{N}_q ds_{\mathrm{move}} k_{\mathrm{tet}}^t / \mathcal{V}_i$$

- 3D background
- Spawn in **random** location...
- Move in **random** direction...
- For a **random** distance...
- Scatter to a **random** direction and energy
- Continue until the neutrino escapes
- Repeat 10^12 times

3D general relativistic calculations of Boltzmann neutrino transport.

NEUTRINO TRANSPORT

(How many neutrinos are where and moving in what direction?)

$$\frac{d \mathbf{f}}{d\lambda} = \mathcal{C}[\mathbf{f}]$$

<u>Two-Moment</u>

$$\partial_{t}(\sqrt{\gamma}E_{(\nu)}) + \partial_{j}[\sqrt{\gamma}(\alpha F_{(\nu)}^{\ j} - \beta^{j}E_{(\nu)})] + \frac{\partial}{\partial\nu}\left(\nu\alpha\sqrt{\gamma}n_{\alpha}M_{(\nu)}^{\ \alpha\beta\gamma}\nabla_{\gamma}u_{\beta}\right)$$

$$= \alpha\sqrt{\gamma}\left(P_{(\nu)}^{\ ij}K_{ij}\right) - F_{(\nu)}^{\ j}\partial_{j}\ln\alpha - S_{(\nu)}^{\ \alpha}n_{\alpha}],$$

$$\partial_{t}(\sqrt{\gamma}F_{(\nu)i}) + \partial_{j}[\sqrt{\gamma}(\alpha P_{(\nu)i}^{\ j} - \beta^{j}F_{(\nu)i})] - \frac{\partial}{\partial\nu}\left(\nu\alpha\sqrt{\gamma}\gamma_{i\alpha}M_{(\nu)}^{\ \alpha\beta\gamma}\nabla_{\gamma}u_{\beta}\right)$$

$$= \sqrt{\gamma}\left[-E_{(\nu)}\partial_{i}\alpha + F_{(\nu)k}\partial_{i}\beta^{k} + \frac{\alpha}{2}P_{(\nu)}^{\ jk}\partial_{i}\gamma_{jk} + \alpha S_{(\nu)}^{\ \alpha}\gamma_{i\alpha}\right]$$

Shibata+ (2011)

IF THE CLOSURE IS PERFECT, THE MOMENT EQUATIONS ARE EXACT.

THE MOMENT CLOSURE

Guess the pressure tensor using <u>only</u> the flux factor.

THE MOMENT CLOSURE

PRESSURE SHAPE AN ORIENTATION

Anisotropy: how different is the pressure in different directions?

<u>Oblateness</u>: is the pressure in one direction smaller than the other two directions?

THE MOMENT CLOSURE IN 1D

THE PRESSURE IS A FUNCTION ONLY OF FLUX

Distinct Branches

No closure fits everything

PRESSURE IS LARGEST IN THE DIRECTION OF FLUX

Pressure is largest <u>or smallest</u> in direction of flux (±10%)

THE PRESSURE TENSOR IS PROLATE

The pressure tensor takes on full range of oblatenesses.

THE THIRD MOMENT CLOSURE IS THE SAME

The third moment has *the same problems, but not the same closure* as the pressure tensor.

SO HOW CAN WE ACTUALLY IMPROVE CLOSURES?

SUPERNOVAE WILL BENEFIT, TOO!

SUPERNOVAE WILL BENEFIT, TOO!

SUPERNOVAE WILL BENEFIT, TOO!

Time = 305 ms

HOW CAN WE IMPROVE CLOSURES?

Correlation between anisotropy and oblateness

Separate closure for third moment

How CAN WE IMPROVE CLOSURES?

Errors before fix:

Closure	P_{ff}	Θ	Α	L_{fff}	L_4
thick	0.16	0.35	0.25	0.05	0.031
$_{ m thin}$	0.6	0.33	0.85	0.1	0.089
Kershaw	0.051	0.33	0.089	0.038	0.026
Wilson	0.042	0.37	0.078	0.03	0.019
Levermore	0.036	0.33	0.08	0.031	0.018
MEFD	0.033	0.33	0.083	0.029	0.016
MEFD maxpack	0.074	0.39	0.079	0.025	0.015
MEFD classical	0.033	0.33	0.082	0.029	0.016
ME	0.033	0.33	0.082	0.029	0.016
Janka1	0.035	0.33	0.083	0.026	0.014
Janka2	0.038	0.33	0.07	0.03	0.016

Errors after fix:

Closure	P_{ff}	Θ	А	
thick	0.16	0.35	0.25	
thin	0.41	0.33	0.85	
Kershaw	0.047	0.15	0.089	
Wilson	0.038	0.15	0.078	
Levermore	0.034	0.15	0.08	
MEFD	0.033	0.15	0.083	
MEFD maxpack	0.059	0.17	0.079	
MEFD classical	0.033	0.15	0.082	
ME	0.033	0.15	0.082	
Janka1	0.036	0.15	0.083	
Janka2	0.035	0.15	0.07	

 L_{fff} L_4 .022 .014

(some statistical noise still present – doing longer runs)

CONCLUSIONS

<u>Moment closures</u> for neutrino transport fail in 3D relativistic environments. Demonstrated possibility for particle methods to <u>improve the moment closures</u>.

Template by SlidesCarnival

Visit me on zoom after the talk!